
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Library design in combinatorial chemistry by Monte Carlo methods
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Chemical Engineering Department, University of California, Los Angeles, California 90095-1592

~Received 19 October 1999!

Strategies for searching the space of variables in combinatorial chemistry experiments are presented, and a
random energy model of combinatorial chemistry experiments is introduced. The search strategies, derived by
analogy with the computer modeling technique of Monte Carlo, effectively search the variable space even in
combinatorial chemistry experiments of only modest size. Efficient implementations of the library design and
redesign strategies are feasible with current experimental capabilities.

PACS number~s!: 02.50.Ng, 05.10.Ln, 82.90.1j
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I. INTRODUCTION

The goal of combinatorial materials discovery is to fi
compositions of matter that maximize a specific mate
property@1–3#, such as superconductivity@4#, magnetoresis-
tance@5#, luminescence@6–8#, ligand specificity@9#, sensor
response@10#, or catalytic activity@2,11–16#. This problem
can be reformulated as one of searching a multidimensio
space, with the material composition, impurity levels, a
synthesis conditions as variables. The property to be o
mized, the figure of merit, is generally an unknown functi
of the variables and can be measured only experimental

Present approaches to combinatorial library design
screening invariably perform a grid search in composit
space, followed by a ‘‘steepest-ascent’’ maximization of t
figure of merit. This procedure becomes inefficient in hig
dimensional spaces or when the figure of merit is no
smooth function of the variables, and its use has limited m
combinatorial chemistry experiments to ternary or qua
nary compounds.

In this paper, we suggest experimental protocols
searching the space of variables in combinatorial chemis
exploiting an analogy between combinatorial materials d
covery and Monte Carlo computer modeling methods.
Sec. II we discuss several of these strategies for library
sign and redesign. In Sec. III we introduce the random ph
volume model that we will use to compare the differe
methods. The effectiveness of different strategies is
cussed in Sec. IV. We conclude in Sec. V.

II. SAMPLING THE SPACE OF VARIABLES
IN MATERIALS DISCOVERY

Several variables can be manipulated in order to seek
material with the optimal figure of merit. Material compos
tion is certainly a variable. But also, film thickness@17# and
deposition method@18# are variables for materials made
thin film form. The processing history, such as temperatu
pressure, pH, and atmospheric composition, is a varia
The guest composition or impurity level can greatly affe
the figure of merit@16#. In addition, the ‘‘crystallinity’’ of
the material can affect the observed figure of merit@17#.
Finally, the method of nucleation or synthesis may affect
phase or morphology of the material and so affect the fig
of merit @19#.
PRE 611063-651X/2000/61~5!/5948~5!/$15.00
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We assume that the composition and noncomposi
variables of each sample can be changed independe
@1,14#. Then, instead of a grid search on the composition a
noncomposition variables, we consider choosing the v
ablesat randomfrom the allowed values. We also consid
choosing the variables in a fashion that attempts to maxim
the amount of information gained from the limited number
samples screened, via a quasirandom, low-discrepancy
quence@20#.

We further consider performing multiple rounds
screening, incorporating feedback as the experiment p
ceeds by treating the combinatorial chemistry experimen
a Monte Carlo in the laboratory. This leads to sampling
experimental figure of meritE proportional to exp(bE). If b
is large, then the Monte Carlo procedure will seek out valu
of the composition and noncomposition variables that ma
mize the figure of merit. Ifb is too large, however, the
Monte Carlo procedure will get stuck in relatively low-lyin
local maxima. The first round is initiated by choosing t
composition and noncomposition variables at random fr
the allowed values. The variables are changed in succee
rounds as dictated by the Monte Carlo procedure.

Two ways of changing the variables are considered: r
domly changing the variables of a randomly chosen samp
small amount and swapping a subset of the variables
tween two randomly chosen samples. These moves are
peated until all the samples in a round have been modifi
The values of the figure of merit for the proposed ne
samples are then measured. Whether to accept the n
proposed samples or to keep the current samples for the
round is decided according to the detailed balance acc
tance criterion. For the random change of one sample,
find the Metropolis acceptance probability

pacc~c→p!5min $1, exp@b~Eproposed2Ecurrent!#%. ~1!

Proposed samples that increase the figure of merit are alw
accepted; proposed samples that decrease the figure of
are accepted with the Metropolis probability. Allowing th
figure of merit occasionally to decrease is what allo
samples to escape from local maxima. The random displa
ment of thed mole fraction variables,xi , is done in the (d
21)-dimensional subspace orthogonal to thed-dimensional
vector (1,1, . . . ,1). This procedure ensures that the co
straint ( i 51

d xi51 is maintained. This subspace is identifie
5948 ©2000 The American Physical Society
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PRE 61 5949LIBRARY DESIGN IN COMBINATORIAL CHEMISTRY . . .
by the Gram-Schmidt procedure. Moves that violate the c
straintxi>0 are rejected. Moves that lead to invalid valu
of the noncomposition variables are also rejected. For
swapping move applied to samplesi andj, we find the modi-
fied acceptance probability

pacc~c→p!5min $1, exp@b~Eproposed
i 1Eproposed

j

2Ecurrent
i 2Ecurrent

j !#%. ~2!

Figure 1~a! shows one round of a Monte Carlo procedu
The parameterb is not related to the thermodynamic tem
perature of the experiment and should be optimized for b
efficiency. The characteristic sizes of the random change
the composition and noncomposition variables are also
rameters that should be optimized.

If the number of composition and noncomposition va
ables is too great, or if the figure of merit changes with
variables in a too-rough fashion, normal Monte Carlo w
not achieve effective sampling. Parallel tempering is a na
ral extension of Monte Carlo that is used to study statist
@21#, spin glass@22#, and molecular@23# systems with rugged
energy landscapes. Our most powerful protocol incorpora
the method of parallel tempering for changing the syst
variables. In parallel tempering, a fraction of the samples
updated by Monte Carlo with parameterb1, a fraction by
Monte Carlo with parameterb2, and so on. At the end o
each round, samples are randomly exchanged between
groups with differentb ’s, as shown in Fig. 1~b!. The accep-
tance probability for exchanging two samples is

pacc~c→p!5min $1, exp@DbDE#%, ~3!

whereDb is the difference in the values ofb between the
two groups, andDE is the difference in the figures of mer
between the two samples. It is important to notice that t
exchange step does not involve any extra screening c
pared to Monte Carlo and is, therefore, ‘‘free’’ in terms
experimental costs. This step is, however, dramatically ef
tive at facilitating the protocol to escape from local maxim
The number of different systems and the temperatures
each system are parameters that must be optimized.

To summarize, the first round of combinatorial chemis
consists of the following steps: constructing the initial libra
of samples, measuring the initial figures of merit, chang
the variables of each sample a small random amoun

FIG. 1. ~a! One Monte Carlo round with 10 samples.~b! One
parallel tempering round with 5 samples atb1 and 5 samples atb2.
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swapping subsets of the variables between pairs of sam
constructing the proposed new library of samples, measu
the figures of merit of the proposed new samples, accep
or rejecting each of the proposed new samples, and perfo
ing parallel tempering exchanges. Subsequent rounds
combinatorial chemistry repeat these steps, starting w
making changes to the current values of the composition
noncomposition variables. These steps are repeated fo
many rounds as desired, or until maximal figures of merit
found.

We have chosen to sample the figure of merit by Mo
Carlo, rather than to optimize it globally by some oth
method, for several reasons. First, Monte Carlo is an eff
tive stochastic optimization method. Second, simple glo
optimization may be misleading since concerns such as
entability, cost of materials, and ease of synthesis are
usually included in the experimental figure of merit. Mor
over, the screen that is most easily performed in the labo
tory, the ‘‘primary screen,’’ is usually only roughly corre
lated with the true figure of merit. Indeed, after findin
materials that look promising based upon the primary scre
experimental secondary and tertiary screens are usually
formed to identify that material which is truly optimal. Third
it might be advantageous to screen for several figures
merit at once. For all of these reasons, sampling by Mo
Carlo to produce several candidate materials is prefe
over global optimization.

III. THE RANDOM PHASE VOLUME MODEL

The effectiveness of these protocols is demonstrated
combinatorial chemistry experiments as simulated by
random phase volume model. The random phase volu
model is not fundamental to the protocols; it is introduced
a simple way to test, parametrize, and validate the vari
searching methods. The model relates the figure of mer
the composition and noncomposition variables in a statist
way. The model is fast enough to allow for validation of th
proposed searching methods on an enormous numbe
samples, yet possesses the correct statistics for the figur
merit landscape. Thed-dimensional vector of composition
mole fractions is denoted byx. The composition mole frac-
tions are non-negative and sum to unity, and so the allow
compositions are constrained to lie within a simplex
d21 dimensions. For the familiar ternary system, this si
plex is an equilateral triangle. The composition variables
grouped into phases centered aroundNx pointsxa randomly
placed within the allowed composition range~the phases
form a Voronoi diagram@24#, see Fig. 2!. The model is de-
fined for any number of composition variables, and the nu
ber of phase points is defined by requiring the average s
ing between phase points to bej50.25. To avoid edge
effects, additional points are added in a belt of widthj
around the simplex of allowed compositions. The figure
merit should change dramatically between composit
phases. Moreover, within each phasea, the figure of merit
should also vary withy5x2xa due to crystallinity effects
such as crystallite size, intergrowths, defects, and fault
@17#. In addition, the noncomposition variables should a
affect the measured figure of merit. The noncomposit
variables are denoted by theb-dimensional vectorz, with
each component constrained to fall within the ran
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FIG. 2. The random phase volume model. The model is shown for the case of three composition variables and one nonco
variable. The boundaries of thex phases are evident by the sharp discontinuities in the figure of merit. To generate this figure, thez variable
was held constant. The boundaries of thez phases are shown as thin dark lines.
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@21,1# without loss of generality. There can be any numb
of noncomposition variables. The figure of merit depends
the composition and noncomposition variables in a co
lated fashion, and so the noncomposition variables also
within Nz ‘‘ z phases’’ defined in the space of compositi
variables. There are a factor of 10 fewer noncomposit
phases than composition phases. The functional form of
model whenx is in composition phasea and noncomposi-
tion phaseg is

E~x,z!5Ua1sx(
k51

q

(
i 1>•••> i k51

d

f i 1••• i k

3jx
2kAi 1••• i k

(ak) yi 1
yi 2

•••yi k

1
1

2 S Wg1sz(
k51

q

(
i 1>•••> i k51

b

f i 1••• i k

3jz
2kBi 1••• i k

(gk) zi 1
zi 2

•••zi kD , ~4!

where f i 1••• i k
is a constant symmetry factor,jx and jz are

constant scale factors, andUa , Wg , Ai 1••• i k
(ak) , andBi 1••• i k

(gk) are

random Gaussian variables with unit variance. In more
tail, the symmetry factor is given by

f i 1••• i k
5

k!

)
i 51

l

oi !

, ~5!
r
n
-
ll

n
e

-

where l is the number of distinct integer values in the s
$ i 1 , . . . ,i k%, andoi is the number of times that distinct valu
i is repeated in the set. Note that 1< l<k and ( i 51

l oi5k.
The scale factors are chosen so that each term in the m
nomial contributes roughly the same amount:jx5j/2 and
jz5(^z6&/^z2&)1/45(3/7)1/4. The sx and sz are chosen so
that the multinomial, crystallinity terms contribute 40%
much as the constant, phase terms on average. For both
tinomialsq56. As Fig. 2 shows, the random phase volum
model describes a rugged figure of merit landscape, w
subtle variations, local maxima, and discontinuous bou
aries.

IV. RESULTS

Six different search protocols are tested with increas
numbers of composition and noncomposition variables. T
total number of samples whose figure of merit will be me
sured is fixed atM5100 000, so that all protocols have th
same experimental cost. The single pass protocols grid,
dom, and LDS are considered. For the grid method, we
fine Mx5M (d21)/(d211b) and Mz5Mb/(d211b). The grid
spacing of the composition variables iszx5(Vd /Mx)

1/(d21),
where

Vd5
Ad

~d21!!
~6!

is the volume of the allowed composition simplex. Note th
the distance from the centroid of the simplex to the clos
point on the boundary of the simplex is
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Rd5
1

@d~d21!#1/2
. ~7!

The spacing for each component of the noncomposition v
ables iszz52/Mz

1/b . For the LDS method, different quas
random sequences are used for the composition and non
position variables. The feedback protocols Monte Ca
Monte Carlo with swap, and parallel tempering are cons
ered. The Monte Carlo parameters were optimized on
cases. It was optimal to perform 100 rounds of 1000 sam
with b52 for d53 and b51 for d54 or 5, and Dx
50.1Rd and Dz50.12 for the maximum random displace
ment in each component. The swapping move consiste
an attempt to swap all of the noncomposition values betw
the two chosen samples, and it was optimal to usePswap
.0.1 for the probability of a swap versus a regular rand
displacement. For parallel tempering it was optimal to p
form 100 rounds with 1000 samples, divided into three s
sets: 50 samples atb1550, 500 samples atb2510, and 450
samples atb351. The 50 samples at largeb essentially
perform a ‘‘steepest-ascent’’ optimization and have sma
Dx50.01Rd andDz50.012.

FIG. 3. The maximum figure of merit found with different pro
tocols on systems with different number of composition~x! and
noncomposition~z! variables. The results are scaled to the ma
mum found by the grid searching method. Each value is avera
over scaled results on 10 different instances of the random p
volume model with different random phases. The Monte Ca
methods are especially effective on the systems with larger num
of variables, where the maximal figures of merit are more diffic
to locate.
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The figures of merit found by the protocols are shown
Fig. 3. The random and LDS protocols find better solutio
than does grid in one round of experiment. More impo
tantly, the Monte Carlo methods have a tremendous adv
tage over one pass methods, especially as the numbe
variables increases, with parallel tempering the best meth
The Monte Carlo methods, in essence, gather more infor
tion about how best to search the variable space with e
succeeding round. This feedback mechanism proves to
effective even for the relatively small total sample size
100 000 considered here. We expect that the advantage o
Monte Carlo methods will become even greater for larg
sample sizes. Note that in cases such as catalytic acti
sensor response, or ligand specificity@25#, the experimental
figure of merit would likely be exponential in the value
shown in Fig. 3, so that the success of the Monte Ca
methods would be even more dramatic. A better calibrat
of the parameters in Eq.~4! may be possible as more da
becomes available in the literature.

V. CONCLUSION

To conclude, the experimental challenges in combina
rial chemistry appear to lie mainly in the screening metho
and in the technology for the creation of the libraries. T
theoretical challenges, on the other hand, appear to
mainly in the library design and redesign strategies. We h
addressed this second question via an analogy with Mo
Carlo computer simulation, and we have introduced the r
dom phase volume model to compare various strategies.
find the multiple-round, Monte Carlo protocols to be esp
cially effective on the more difficult systems with large
numbers of composition and noncomposition variables.

An efficient implementation of the search strategy is fe
sible with existing library creation technology. Moreov
‘‘closing the loop’’ between library design and redesign
achievable with the same database technology currently u
to track and record the data from combinatorial chemis
experiments. These multiple-round protocols, when co
bined with appropriate robotic controls, should allow t
practical application of combinatorial chemistry to mo
complex and interesting systems.
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