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Library design in combinatorial chemistry by Monte Carlo methods
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Strategies for searching the space of variables in combinatorial chemistry experiments are presented, and a
random energy model of combinatorial chemistry experiments is introduced. The search strategies, derived by
analogy with the computer modeling technique of Monte Carlo, effectively search the variable space even in
combinatorial chemistry experiments of only modest size. Efficient implementations of the library design and
redesign strategies are feasible with current experimental capabilities.
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[. INTRODUCTION We assume that the composition and noncomposition
variables of each sample can be changed independently
The goal of combinatorial materials discovery is to find[1,14]. Then, instead of a grid search on the composition and
compositions of matter that maximize a specific materialnoncomposition variables, we consider choosing the vari-
property[1-3], such as superconductivif$], magnetoresis- ablesat randomfrom the allowed values. We also consider
tance[5], luminescenc¢6—8|, ligand specificity|9], sensor  choosing the variables in a fashion that attempts to maximize
responsd 10|, or catalytic activity[2,11-14. This problem the amount of information gained from the limited number of
can be reformulated as one of searching a multidimensiondamples screened, via a quasirandom, low-discrepancy se-
space, with the material composition, impurity levels, andquence[20].
synthesis conditions as variables. The property to be opti- We further consider performing multiple rounds of
mized, the figure of merit, is generally an unknown functionscreening, incorporating feedback as the experiment pro-
of the variables and can be measured only experimentally.ceeds by treating the combinatorial chemistry experiment as
Present approaches to combinatorial library design and Monte Carlo in the laboratory. This leads to sampling the
screening invariably perform a grid search in compositionexperimental figure of meri proportional to exp8E). If 8
space, followed by a “steepest-ascent” maximization of theis large, then the Monte Carlo procedure will seek out values
figure of merit. This procedure becomes inefficient in high-of the composition and noncomposition variables that maxi-
dimensional spaces or when the figure of merit is not anize the figure of merit. If3 is too large, however, the
smooth function of the variables, and its use has limited mosilonte Carlo procedure will get stuck in relatively low-lying
combinatorial chemistry experiments to ternary or quaterlocal maxima. The first round is initiated by choosing the
nary compounds. composition and noncomposition variables at random from
In this paper, we suggest experimental protocols forthe allowed values. The variables are changed in succeeding
searching the space of variables in combinatorial chemistryrounds as dictated by the Monte Carlo procedure.
exploiting an analogy between combinatorial materials dis- Two ways of changing the variables are considered: ran-
covery and Monte Carlo computer modeling methods. Indomly changing the variables of a randomly chosen sample a
Sec. Il we discuss several of these strategies for library desmall amount and swapping a subset of the variables be-
sign and redesign. In Sec. Il we introduce the random phastveen two randomly chosen samples. These moves are re-
volume model that we will use to compare the differentpeated until all the samples in a round have been modified.
methods. The effectiveness of different strategies is disThe values of the figure of merit for the proposed new
cussed in Sec. IV. We conclude in Sec. V. samples are then measured. Whether to accept the newly
proposed samples or to keep the current samples for the next
round is decided according to the detailed balance accep-
tance criterion. For the random change of one sample, we
find the Metropolis acceptance probability

Several variables can be manipulated in order to seek the
material with the optimal figure of merit. Material composi- Pacd ¢—P)=min{1, exfd B(Epoposed Ecurrend I} (1)
tion is certainly a variable. But also, film thickndds’] and
deposition method18] are variables for materials made in Proposed samples that increase the figure of merit are always
thin film form. The processing history, such as temperatureaccepted; proposed samples that decrease the figure of merit
pressure, pH, and atmospheric composition, is a variablére accepted with the Metropolis probability. Allowing the
The guest composition or impurity level can greatly affectfigure of merit occasionally to decrease is what allows
the figure of merif16]. In addition, the “crystallinity” of ~ samples to escape from local maxima. The random displace-
the material can affect the observed figure of mgtit]. ~ ment of thed mole fraction variablesy;, is done in the ¢
Finally, the method of nucleation or synthesis may affect the— 1)-dimensional subspace orthogonal to thdimensional
phase or morphology of the material and so affect the figurarector (1,1...,1). This procedure ensures that the con-

of merit[19]. straintEid:lxizl is maintained. This subspace is identified

II. SAMPLING THE SPACE OF VARIABLES
IN MATERIALS DISCOVERY
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a b swapping subsets of the variables between pairs of samples,
constructing the proposed new library of samples, measuring
Monte Carlo Parallel Tempering the figures of merit of the proposed new samples, accepting
0006000000 -~ 00000 00000 or rejecting each of the proposed new samples, and perform-
ing parallel tempering exchanges. Subsequent rounds of
Select l combinatorial chemistry repeat these steps, starting with
0000000000 MCat B, MCatB, making changes to the current values of the composition and
S l 02000 €00€0 noncomposition variables. These steps are repeated for as
creen many rounds as desired, or until maximal figures of merit are
0000000000 Swap found.

We have chosen to sample the figure of merit by Monte
Carlo, rather than to optimize it globally by some other
method, for several reasons. First, Monte Carlo is an effec-

FIG. 1. (a) One Monte Carlo round with 10 samplds) One  tive stochastic optimization method. Second, simple global
parallel tempering round with 5 samples@tand 5 samples &8,.  Optimization may be misleading since concerns such as pat-

entability, cost of materials, and ease of synthesis are not
by the Gram-Schmidt procedure. Moves that violate the contisually included in the experimental figure of merit. More-
straintx;=0 are rejected. Moves that lead to invalid valuesOVer, the screen that is most easily performed in the labora-
of the noncomposition variables are also rejected. For théory, the “primary screen,” is usually only roughly corre-
Swapping move app“ed to Sampieandj, we find the modi- lated with the true figure of merit. |nd86d, after flndlng

Metropolis at B
- 0200000000 Leccoe e0080

fied acceptance probability materials that look promising based upon the primary screen,
experimental secondary and tertiary screens are usually per-
Pacd €—P)=min{1, exd B(Eyoposed Ebroposed formed to identify that material which is truly optimal. Third,
. . it might be advantageous to screen for several figures of
— Ecureni™ Eturrend 1} (2 merit at once. For all of these reasons, sampling by Monte

) Carlo to produce several candidate materials is preferred
Figure Xa) shows one round of a Monte Carlo procedure.qyer global optimization.

The parameteg is not related to the thermodynamic tem-
perature of the experiment and should be optimized for best ll. THE RANDOM PHASE VOLUME MODEL
efficiency. The characteristic sizes of the random changes in

the composition and noncomposition variables are also pa- 1he effectiveness of these protocols is demonstrated by
rameters that should be optimized. combinatorial chemistry experiments as simulated by the

If the number of composition and noncomposition vari-fandom phase volume model. The random phase volume

ables is too great, or if the figure of merit changes with themodel is not fundamental to the.protocols; it. is introduced_ as
variables in a too-rough fashion, normal Monte Carlo will @ Simple way to test, parametrize, and validate the various
not achieve effective sampling. Parallel tempering is a natuS&arching methods. The model relates the figure of merit to
ral extension of Monte Carlo that is used to study statistical"® composition and noncomposition variables in a statistical
[21], spin glas§22], and moleculaf23] systems with rugged Way- The model is fast enough to allow for validation of the
energy landscapes. Our most powerful protocol incorporateBroPosed searching methods on an enormous number of
the method of parallel tempering for changing the systen?am.p'es’ yet possesses.the cqrrect statistics for the flgpre-of-
variables. In parallel tempering, a fraction of the samples ar&"€rit landscape. The-dimensional vector of composition
updated by Monte Carlo with parametg, a fraction by ~ Mole fractions is denoted by. The composition mole frac-
Monte Carlo with paramete8,, and so on. At the end of tions are non-negative and sum to unity, and so the allowed
each round, samples are randomly exchanged between tf@MPOsitions are constrained to lie within a simplex in

groups with differenid’s, as shown in Fig. (b). The accep- d—1 dimensions. For the familiar ternary system, this sim-
tance probability for exé:hanging two samples is plex is an equilateral triangle. The composition variables are
grouped into phases centered arotdpointsx, randomly

Pacd C—P)=min{1, exd ABAE]}, ®) placed within the allowed composition rang#e phases
form a Voronoi diagranj24], see Fig. 2 The model is de-
where A is the difference in the values ¢@f between the fined for any number of composition variables, and the num-
two groups, and\E is the difference in the figures of merit ber of phase points is defined by requiring the average spac-
between the two samples. It is important to notice that thisng between phase points to #=0.25. To avoid edge
exchange step does not involve any extra screening coneffects, additional points are added in a belt of width 2
pared to Monte Carlo and is, therefore, “free” in terms of around the simplex of allowed compositions. The figure of
experimental costs. This step is, however, dramatically effecmerit should change dramatically between composition
tive at facilitating the protocol to escape from local maxima.phases. Moreover, within each phasethe figure of merit
The number of different systems and the temperatures afhould also vary withy=x—x, due to crystallinity effects
each system are parameters that must be optimized. such as crystallite size, intergrowths, defects, and faulting
To summarize, the first round of combinatorial chemistry[17]. In addition, the noncomposition variables should also
consists of the following steps: constructing the initial library affect the measured figure of merit. The noncomposition
of samples, measuring the initial figures of merit, changingvariables are denoted by thedimensional vectoz, with
the variables of each sample a small random amount ogach component constrained to fall within the range



5950

MARCO FALCIONI AND MICHAEL W. DEEM

PRE 61

Max E

Min E

FIG. 2. The random phase volume model. The model is shown for the case of three composition variables and one noncomposition

variable. The boundaries of tixephases are evident by the sharp discontinuities in the figure of merit. To generate this figarearible
was held constant. The boundaries of thghases are shown as thin dark lines.

[ —1,1] without loss of generality. There can be any numberwherel is the number of distinct integer values in the set

of noncomposition variables. The figure of merit depends ofi, . .

. ik}, ando; is the number of times that distinct value

the composition and noncomposition variables in a corret is repeated in the set. Note thatl<k and =!_,0;=k.
lated fashion, and so the noncomposition variables also faffhe scale factors are chosen so that each term in the multi-
within N, “z phases” defined in the space of compositionnomial contributes roughly the same amougt=£/2 and
variables. There are a factor of 10 fewer noncompositiorg,= ((z°)/(z%))¥*=(3/7)*. The o, and o, are chosen so
phases than composition phases. The functional form of thghat the multinomial, crystallinity terms contribute 40% as

model whenx is in composition phaser and noncomposi-
tion phasey is

q d
E(x,z)=Ua+oXE 2 fi

I
K=1iy=-=i=1 1 K

X §;kAi(fk.).iKYi iy Yiy

q b
W7+UZE 2 fi

1
+_
2 k=1i,= Zig=1 !

x& B, 7.2, ’Zik) , 4

wherefil.__ik is a constant symmetry factog, and &, are

constant scale factors, ahl,, W, A{Y; , andB{Y; are

much as the constant, phase terms on average. For both mul-
tinomialsq=6. As Fig. 2 shows, the random phase volume
model describes a rugged figure of merit landscape, with
subtle variations, local maxima, and discontinuous bound-
aries.

IV. RESULTS

Six different search protocols are tested with increasing
numbers of composition and noncomposition variables. The
total number of samples whose figure of merit will be mea-
sured is fixed aM =100 000, so that all protocols have the
same experimental cost. The single pass protocols grid, ran-
dom, and LDS are considered. For the grid method, we de-
fine M,=M@"D/E=1%D) gnd M,=MP(@=1%b)  The grid
spacing of the composition variablesdg= (V4/M,) Y@=,
where

random Gaussian variables with unit variance. In more de-

tail, the symmetry factor is given by

k!
fi == (5

1k I
II o
i=1

Jd

CE] ©)

Vy

is the volume of the allowed composition simplex. Note that
the distance from the centroid of the simplex to the closest
point on the boundary of the simplex is
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B N I B B I B B The figures of merit found by the protocols are shown in

=—a Grid 1 Fig. 3. The random and LDS protocols find better solutions

mﬁggdom /o than does grid in one round of experiment. More impor-

@ —-© Monte Carlo ; tantly, the Monte Carlo methods have a tremendous advan-
2[ ©@---oMCSwap S tage over one pass methods, especially as the number of

o—o Parallel Tempering

variables increases, with parallel tempering the best method.
The Monte Carlo methods, in essence, gather more informa-
tion about how best to search the variable space with each
succeeding round. This feedback mechanism proves to be
effective even for the relatively small total sample size of

100 000 considered here. We expect that the advantage of the

Relative Figure of Merit

g S @r § g S g ﬁ g z,e,) ,}*,’ Monte Cz_irlo methods wi!l become even greater fpr Iar.g(_er
X §'I<’ XX X X X X X X X X sample sizes. Note that in cases such as catalytic activity,

sensor response, or ligand specifidiBp], the experimental
Number of Components figure of merit would likely be exponential in the values
shown in Fig. 3, so that the success of the Monte Carlo
FIG. 3. The maximum figure of merit found with different pro- methods would be even more dramatic. A better calibration
tocols on systems with different number of composition and  of the parameters in Ed4) may be possible as more data
noncomposition(z) variables. The results are scaled to the maxi-becomes available in the literature.
mum found by the grid searching method. Each value is averaged
over scaled results on 10 different instances of the random phase
volume model with different random phases. The Monte Carlo V. CONCLUSION
methods are especially effective on the systems with larger number
of variables, where the maximal figures of merit are more difficult  To conclude, the experimental challenges in combinato-
to locate. rial chemistry appear to lie mainly in the screening methods
and in the technology for the creation of the libraries. The
1 theoretical challenges, on the other hand, appear to lie
=, (7)  mainly in the library design and redesign strategies. We have
[d(d—1)] addressed this second question via an analogy with Monte

. o .Carlo computer simulation, and we have introduced the ran-
The spacing for each component of the noncomposition vari-,

: . .~ dom phase volume model to compare various strategies. We
— 1/b

ables is{;=2/M,". For the LDS method, dllf.ferent quas fing the multiple-round, Monte Carlo protocols to be espe-

random sequences are used for the composition and nonco

" X 'Yally effective on the more difficult systems with larger
position variables. The feedback protocols Monte Carlo, \ \bers of composition and noncomposition variables.

Monte Carlo with swap, and parallel tempering are consid- -~ A efficient implementation of the search strategy is fea-

ered. The Monte Carlo parameters were optimized on teshiy e \ith existing library creation technology. Moreover
cases. It was optimal to perform 100 rounds of 1000 samples

. = - - - closing the loop” between library design and redesign is
with f=2 for d=3 and f=1 for d=4 or 5, andAX  ,cpieyable with the same database technology currently used

:o'le and Az=0.12 for the maximum random displace- to track and record the data from combinatorial chemistry
ment in each component. The swapping move consisted Qly ariments. These multiple-round protocols, when com-

an attempt to swap all of the noncomposition values betweepineq with appropriate robotic controls, should allow the

the two chosen samples, and it was optimal ©0 BSgap  practical application of combinatorial chemistry to more
:.O.l for the probability of a swap versus a regglar rando”bomplex and interesting systems.

displacement. For parallel tempering it was optimal to per-
form 100 rounds with 1000 samples, divided into three sub-
sets: 50 samples #&; =50, 500 samples g&,=10, and 450
samples aiB;=1. The 50 samples at largé essentially
perform a “steepest-ascent” optimization and have smaller This research was supported by the National Science
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